If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+3x-124=0
a = 7; b = 3; c = -124;
Δ = b2-4ac
Δ = 32-4·7·(-124)
Δ = 3481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3481}=59$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-59}{2*7}=\frac{-62}{14} =-4+3/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+59}{2*7}=\frac{56}{14} =4 $
| m∠1=20 | | 2n-6=2(n+2)-10 | | 0.5h=6 | | x2+12x-11=7x-8 | | x2-10x=56 | | 5-2(x-1)=4(3-x)-2x | | 4x−1/2=x+3/4 | | 4x-31=12 | | x+3x=3,2 | | (3x-12)*2=6 | | 20=-x^2-12x | | x3+3x^2-490=0 | | x^2+3x^2-490=0 | | x+0.5*x=33 | | 3c=2c+4c | | 5(2b=8) | | 2x-1/7=7/3 | | 5x-2=9-3x | | 5x-3=9-3x | | 5×4-8=2x | | 2x/14=3/7 | | 2x/7=3/7 | | Y=-4x-94 | | 1/x+1/2x+3/x=11 | | -6+2=-4x+10 | | 4x-5x=3x+28 | | 7×+9=2x-16 | | 4x+4/6=8 | | 2h²-5h+3=0 | | 3(x+1)=2×+6 | | 15x^2+27x+8=0 | | 800=1.5x^2-(20+5x) |